Higher manganese silicides (HMS) are proven to be promising candidates as p-type thermoelectric material in the temperature range of 400-700 K. In this work, a series of nanostructured (NS) bulk MnSi1.73with different levels of Ytterbium inclusions were fabricated via ball milling and the solid state reaction was completed by spark plasma sintering (SPS). Nanopowders and SPS consolidated Yb-HMS nanocomposites (NC) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to reveal the crystal structure and morphology respectively. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray spectroscopy (EDS) was used to investigate the material composition in bulk grains. Yb was observed to stay as nanoinclusions at the grain boundaries. TE transport properties, including Seebeck coefficient, electrical resistivity, and thermal diffusivity as well as charge carrier concentrations were evaluated. Thermal conductivity decreased with increasing Yb content, while the electrical conductivity improved for the highest Yb content. A highest figure of merit (ZT) of 0.42 at 600 °C was achieved for 1% Yb-HMS NC sample.

Thermoelectric performance of higher manganese silicide nanocomposites

Famengo A;Fiameni S;Boldrini S;Battiston S;
2015

Abstract

Higher manganese silicides (HMS) are proven to be promising candidates as p-type thermoelectric material in the temperature range of 400-700 K. In this work, a series of nanostructured (NS) bulk MnSi1.73with different levels of Ytterbium inclusions were fabricated via ball milling and the solid state reaction was completed by spark plasma sintering (SPS). Nanopowders and SPS consolidated Yb-HMS nanocomposites (NC) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to reveal the crystal structure and morphology respectively. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray spectroscopy (EDS) was used to investigate the material composition in bulk grains. Yb was observed to stay as nanoinclusions at the grain boundaries. TE transport properties, including Seebeck coefficient, electrical resistivity, and thermal diffusivity as well as charge carrier concentrations were evaluated. Thermal conductivity decreased with increasing Yb content, while the electrical conductivity improved for the highest Yb content. A highest figure of merit (ZT) of 0.42 at 600 °C was achieved for 1% Yb-HMS NC sample.
2015
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Higher manganese silicide
Nanostructured
Spark plasma sintering
Thermoelectrics
File in questo prodotto:
File Dimensione Formato  
prod_292966-doc_84414.pdf

solo utenti autorizzati

Descrizione: Thermoelectric performance of higher manganese silicide nanocomposites
Tipologia: Versione Editoriale (PDF)
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/232200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 40
social impact