This paper aims at indicating research perspectives on the mathematical modeling of crowd dynamics, pointing on the one hand to insights into the complexity features of pedestrian flows and on the other hand to a critical overview of the most popular modeling approaches currently adopted in the specialized literature. Particularly, the focus is on scaling problems, namely representation and modeling at microscopic, macroscopic, and mesoscopic scales, which, entangled with the complexity issues of living systems, generate multiscale dynamical effects, such as e.g. self-organization. Mathematical structures suitable to approach such multiscale aspects are proposed, along with a forward look at research developments. © 2012 World Scientific Publishing Company.
Modeling crowd dynamics from a complex system viewpoint
Tosin Andrea
2012
Abstract
This paper aims at indicating research perspectives on the mathematical modeling of crowd dynamics, pointing on the one hand to insights into the complexity features of pedestrian flows and on the other hand to a critical overview of the most popular modeling approaches currently adopted in the specialized literature. Particularly, the focus is on scaling problems, namely representation and modeling at microscopic, macroscopic, and mesoscopic scales, which, entangled with the complexity issues of living systems, generate multiscale dynamical effects, such as e.g. self-organization. Mathematical structures suitable to approach such multiscale aspects are proposed, along with a forward look at research developments. © 2012 World Scientific Publishing Company.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.