Halogen bonding is arguably the least exploited among the many noncovalent interactions used in dictating molecular self-assembly. However, its directionality renders it unique compared to ubiquitous hydrogen bonding. Here, the role of this directionality in controlling the performance of lightresponsive supramolecular polymers is highlighted. In particular, it is shown that light-induced surface patterning, a unique phenomenon occurring in azobenzene-containing polymers, is more effi cient in halogen-bonded polymer- azobenzene complexes than in the analogous hydrogen-bonded complexes. A systematic study is performed on a series of azo dyes containing different halogen or hydrogen bonding donor moieties, complexed to poly(4- vinylpyridine) backbone. Through single-atom substitution of the bond-donor, control of both the strength and the nature of the noncovalent interaction between the azobenzene units and the polymer backbone is achieved. Importantly, such substitution does not signifi cantly alter the electronic properties of the azobenzene units, hence providing us with unique tools in studying the structure-performance relationships in the light-induced surface deformation process. The results represent the fi rst demonstration of light-responsive halogen-bonded polymer systems and also highlight the remarkable potential of halogen bonding in fundamental studies of photoresponsive azobenzenecontaining polymers.

Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers

A Forni;
2012

Abstract

Halogen bonding is arguably the least exploited among the many noncovalent interactions used in dictating molecular self-assembly. However, its directionality renders it unique compared to ubiquitous hydrogen bonding. Here, the role of this directionality in controlling the performance of lightresponsive supramolecular polymers is highlighted. In particular, it is shown that light-induced surface patterning, a unique phenomenon occurring in azobenzene-containing polymers, is more effi cient in halogen-bonded polymer- azobenzene complexes than in the analogous hydrogen-bonded complexes. A systematic study is performed on a series of azo dyes containing different halogen or hydrogen bonding donor moieties, complexed to poly(4- vinylpyridine) backbone. Through single-atom substitution of the bond-donor, control of both the strength and the nature of the noncovalent interaction between the azobenzene units and the polymer backbone is achieved. Importantly, such substitution does not signifi cantly alter the electronic properties of the azobenzene units, hence providing us with unique tools in studying the structure-performance relationships in the light-induced surface deformation process. The results represent the fi rst demonstration of light-responsive halogen-bonded polymer systems and also highlight the remarkable potential of halogen bonding in fundamental studies of photoresponsive azobenzenecontaining polymers.
2012
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_194745-doc_42116.pdf

solo utenti autorizzati

Descrizione: Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers
Dimensione 648.99 kB
Formato Adobe PDF
648.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/232583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 182
social impact