We demonstrate that the plasmon frequency and Drude weight of the electron liquid in a doped graphene sheet are strongly renormalized by electron-electron interactions even in the long-wavelength limit. This effect is not captured by the random-phase approximation (RPA), commonly used to describe electron fluids, and is due to coupling between the center-of-mass motion and the pseudospin degree of freedom of the graphene's massless Dirac fermions. By making use of diagrammatic perturbation theory to first order in the electron-electron interaction, we show that this coupling enhances both the plasmon frequency and the Drude weight relative to the RPA value. We also show that interactions are responsible for a significant enhancement of the optical conductivity at frequencies just above the absorption threshold. Our predictions can be checked by far-infrared spectroscopy or inelastic light scattering.

Drude weight, plasmon dispersion, and a.c. conductivity in doped graphene sheets

M Polini;
2011

Abstract

We demonstrate that the plasmon frequency and Drude weight of the electron liquid in a doped graphene sheet are strongly renormalized by electron-electron interactions even in the long-wavelength limit. This effect is not captured by the random-phase approximation (RPA), commonly used to describe electron fluids, and is due to coupling between the center-of-mass motion and the pseudospin degree of freedom of the graphene's massless Dirac fermions. By making use of diagrammatic perturbation theory to first order in the electron-electron interaction, we show that this coupling enhances both the plasmon frequency and the Drude weight relative to the RPA value. We also show that interactions are responsible for a significant enhancement of the optical conductivity at frequencies just above the absorption threshold. Our predictions can be checked by far-infrared spectroscopy or inelastic light scattering.
2011
Istituto Nanoscienze - NANO
graphene
Drude weight
ac conductivity
many-body effects
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/232791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact