We demonstrate that single-layer graphene in the presence of a metal gate displays a gapless collective (plasmon) mode that has a linear dispersion at long wavelengths. We calculate exactly the acoustic-plasmon group velocity at the level of the random phase approximation and carry out microscopic calculations of the one-body spectral function of such systems. Despite screening exerted by the metal, we find that graphene's quasiparticle spectrum displays a very rich structure characterized by composite hole-acoustic plasmon satellite bands (that we term for brevity "soundarons"), which can be observed by e.g. angle-resolved photoemission spectroscopy.

Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate

M Polini
2011

Abstract

We demonstrate that single-layer graphene in the presence of a metal gate displays a gapless collective (plasmon) mode that has a linear dispersion at long wavelengths. We calculate exactly the acoustic-plasmon group velocity at the level of the random phase approximation and carry out microscopic calculations of the one-body spectral function of such systems. Despite screening exerted by the metal, we find that graphene's quasiparticle spectrum displays a very rich structure characterized by composite hole-acoustic plasmon satellite bands (that we term for brevity "soundarons"), which can be observed by e.g. angle-resolved photoemission spectroscopy.
2011
Istituto Nanoscienze - NANO
graphene
metal gate
ARPES spectra
many-body effects
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/232793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact