n of closure, which is the basis of most methods currently used. Further difficulties arise when obtaining density estimates at small spatial scales. Using eight years (1996-2003) to monitor data from a roe deer Capreolus capreolus population that lives in a sub-Mediterranean environment in central Italy, we were able to estimate local density (at a spatial scale of one home range) by using a large sample of radio-marked animals. Local density estimates could be obtained only in zones in which radio-marked deer were available in sufficient numbers. To estimate local density in the whole study area, we developed a calibration model, which allowed us to infer density where radio-marked deer were absent or scarce. To do this, we computed the mark-resight density estimates (using radio-marked animals) and related these estimates to linear and non-linear functions of animal count and surface area of fields, to obtain a set of density estimators. Then, we selected a linear combination of such estimators, whose quality was assessed by cross-validation. Our results show that the method we propose can be effective in investigating small-scale spatial structure of density in a roe deer population. We see several potential applications of this method for both research and management purposes.

A method to estimate roe deer Capreolus capreolus density at various spatial scales in a fragmented landscape

2010

Abstract

n of closure, which is the basis of most methods currently used. Further difficulties arise when obtaining density estimates at small spatial scales. Using eight years (1996-2003) to monitor data from a roe deer Capreolus capreolus population that lives in a sub-Mediterranean environment in central Italy, we were able to estimate local density (at a spatial scale of one home range) by using a large sample of radio-marked animals. Local density estimates could be obtained only in zones in which radio-marked deer were available in sufficient numbers. To estimate local density in the whole study area, we developed a calibration model, which allowed us to infer density where radio-marked deer were absent or scarce. To do this, we computed the mark-resight density estimates (using radio-marked animals) and related these estimates to linear and non-linear functions of animal count and surface area of fields, to obtain a set of density estimators. Then, we selected a linear combination of such estimators, whose quality was assessed by cross-validation. Our results show that the method we propose can be effective in investigating small-scale spatial structure of density in a roe deer population. We see several potential applications of this method for both research and management purposes.
2010
Istituto dei Sistemi Complessi - ISC
HABITAT QUALITY; POPULATIONS; density DEPENDENCE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/233170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact