The logical correspondence between the equational semantics of Basic LOTOS and is standard, derivational one is proven. A derivational semantics is traditionally given by means of a set of axioms and deduction rules which define a deduction system. With such semantics, some difficulties arise when dealing with deduction rules with negative premises; also, the proof that a transition cannot take place cannot be carried out within the formal system. On the other hand, in the equational semantics approach, a transition is viewed as the application of a triadic predicate. Such a function is defined by a set of equations, and this, in a natural way, allows for the use of negative information within the system. It is shown that for Basic LOTOS, when restricted to guarded recursion, both formal reasoning systems strongly correspond

Completeness of the equational semantics for basic LOTOS

MASSINK M;
1993

Abstract

The logical correspondence between the equational semantics of Basic LOTOS and is standard, derivational one is proven. A derivational semantics is traditionally given by means of a set of axioms and deduction rules which define a deduction system. With such semantics, some difficulties arise when dealing with deduction rules with negative premises; also, the proof that a transition cannot take place cannot be carried out within the formal system. On the other hand, in the equational semantics approach, a transition is viewed as the application of a triadic predicate. Such a function is defined by a set of equations, and this, in a natural way, allows for the use of negative information within the system. It is shown that for Basic LOTOS, when restricted to guarded recursion, both formal reasoning systems strongly correspond
1993
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
0-8186-4430-3
File in questo prodotto:
File Dimensione Formato  
prod_190563-doc_55699.pdf

solo utenti autorizzati

Descrizione: Completeness of the equational semantics for Basic LOTOS
Tipologia: Versione Editoriale (PDF)
Dimensione 6.52 MB
Formato Adobe PDF
6.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/233875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact