Immunofluorescence techniques on formalin fixed paraffin-embedded sections allow for the evaluation of the expression and spatial distribution of specific markers in patient tissue specimens or for monitoring the fate of labeled cells after in vivo injection. This technique suffers however from the auto-fluorescence background signal of the embedded tissue that eventually confounds the analysis. Here we show that rod-like semiconductor nanocrystals (QRs), intramuscularly injected in living mice, could be clearly detected by confocal microscopy in formalin fixed paraffin-embedded tissue sections. Despite the low amount of QRs amount injected (25 picomoles), these were clearly visible after 24 h in the muscle sections and their fluorescence signal was stronger than that of CdSe/ZnS quantum dots (QDs) similarly functionalized and in the case of QRs only, the signal lasted even after 21 days after the injection.
CdSe/CdS Semiconductor Quantum Rods as Robust Fluorescent Probes for Paraffin-Embedded Tissue Imaging
2011
Abstract
Immunofluorescence techniques on formalin fixed paraffin-embedded sections allow for the evaluation of the expression and spatial distribution of specific markers in patient tissue specimens or for monitoring the fate of labeled cells after in vivo injection. This technique suffers however from the auto-fluorescence background signal of the embedded tissue that eventually confounds the analysis. Here we show that rod-like semiconductor nanocrystals (QRs), intramuscularly injected in living mice, could be clearly detected by confocal microscopy in formalin fixed paraffin-embedded tissue sections. Despite the low amount of QRs amount injected (25 picomoles), these were clearly visible after 24 h in the muscle sections and their fluorescence signal was stronger than that of CdSe/ZnS quantum dots (QDs) similarly functionalized and in the case of QRs only, the signal lasted even after 21 days after the injection.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.