In this paper we investigate the possibility of processing the tactile perception by using a novel biomimetic approach for the pattern recognition module. The goal is to enhance the perception in complex virtual environments deriving from haptic displays mimicking human tactile discrimination. To do this we explored a Minimally Invasive Surgery application where the tactile information are strictly limited. In fact, this promising technique suffers from some evident limitations due to the surgeon loss of tactile perception during palpation of internal organs. This is basically due to the mechanical transmission of the elongated tools used during operation. We propose to integrate an Artificial Neural Network in an electronic board capable of processing data provided by a sensorized laparoscopic tool. The capabilities of several pattern recognition techniques present in literature, the Principal Component Analysis (PCA), a Multilayer Perception (MLP) and a Kohonen Self-Organising Map (KSOM) are investigated. The results are compared with that obtained psychophysically on five viscoelastic materials.

An Artificial Neural Network approach for Haptic Discrimination in Minimally Invasive Surgery

Ferro M;Pioggia G;
2007

Abstract

In this paper we investigate the possibility of processing the tactile perception by using a novel biomimetic approach for the pattern recognition module. The goal is to enhance the perception in complex virtual environments deriving from haptic displays mimicking human tactile discrimination. To do this we explored a Minimally Invasive Surgery application where the tactile information are strictly limited. In fact, this promising technique suffers from some evident limitations due to the surgeon loss of tactile perception during palpation of internal organs. This is basically due to the mechanical transmission of the elongated tools used during operation. We propose to integrate an Artificial Neural Network in an electronic board capable of processing data provided by a sensorized laparoscopic tool. The capabilities of several pattern recognition techniques present in literature, the Principal Component Analysis (PCA), a Multilayer Perception (MLP) and a Kohonen Self-Organising Map (KSOM) are investigated. The results are compared with that obtained psychophysically on five viscoelastic materials.
2007
978-1-4244-1634-9
tactile perception
biomimetic sensors
File in questo prodotto:
File Dimensione Formato  
prod_185489-doc_33626.pdf

solo utenti autorizzati

Descrizione: An Artificial Neural Network approach for Haptic Discrimination in Minimally Invasive Surgery
Tipologia: Versione Editoriale (PDF)
Dimensione 3.18 MB
Formato Adobe PDF
3.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/234906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact