Machine learning methodologies such as artificial neural networks (ANN), fuzzy logic or genetic programming, as well as principal component analysis (PCA) and intelligent control have been recently introduced in medicine. ANNs imitate the structure and workings of the human brain by means of mathematical models able to adapt several parameters. ANNs learn the input/output behavior of a system through a supervised or an unsupervised learning algorithm. In this work, we present and demonstrate a new pre-processing algorithm able to improve the performance of an ANN in the processing of biomedical datasets. The algorithm was tested analyzing lung function and fractional exhaled nitric oxide differences in the breath in children with allergic bronchial asthma and in normal population. Classification obtained using non linear PCA based on the new algorithm shows a better precision in separating asthmatic and control subjects.

Backpropagation-Based Non Linear PCA for Biomedical Applications

Pioggia G
2009

Abstract

Machine learning methodologies such as artificial neural networks (ANN), fuzzy logic or genetic programming, as well as principal component analysis (PCA) and intelligent control have been recently introduced in medicine. ANNs imitate the structure and workings of the human brain by means of mathematical models able to adapt several parameters. ANNs learn the input/output behavior of a system through a supervised or an unsupervised learning algorithm. In this work, we present and demonstrate a new pre-processing algorithm able to improve the performance of an ANN in the processing of biomedical datasets. The algorithm was tested analyzing lung function and fractional exhaled nitric oxide differences in the breath in children with allergic bronchial asthma and in normal population. Classification obtained using non linear PCA based on the new algorithm shows a better precision in separating asthmatic and control subjects.
2009
Istituto di Fisiologia Clinica - IFC
978-1-4244-4735-0
File in questo prodotto:
File Dimensione Formato  
prod_185529-doc_33744.pdf

solo utenti autorizzati

Descrizione: Backpropagation-Based Non Linear PCA for Biomedical Applications
Dimensione 399.75 kB
Formato Adobe PDF
399.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/234946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact