We study the class Q of quasiconvex functions (i.e. functions with convex sublevel sets), by associating to every quasi convex function u a function H :R^n × R->R ? {±?}, such that H(X, t) is nondecreasing in t and sublinear in X: for every fixed t , the function H(·, t) is nothing else than the support function of the sublevel set {x ? R^n: u(x)<t}. When u is suitably regular, we establish an exact relation between the Hessian matrices of u and H; this allows us to find explicit formulae to write the k-Hessian operators of u in terms of H. Then we investigate on Minkowski addition of quasiconvex functions.

On the Hessian matrix and Minkowski addition of quasiconvex functions

M LONGINETTI;
2007

Abstract

We study the class Q of quasiconvex functions (i.e. functions with convex sublevel sets), by associating to every quasi convex function u a function H :R^n × R->R ? {±?}, such that H(X, t) is nondecreasing in t and sublinear in X: for every fixed t , the function H(·, t) is nothing else than the support function of the sublevel set {x ? R^n: u(x)
2007
quasiconvex funxtions
Minkowski addition
Hessian equations
Elliptic partial differential equations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/234970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact