A photoelectron circular dichroism (CD) study of the valence states of 2-amino-1-propanol (alaninol) in the gas phase is presented. The aim of the investigation is to reveal conformer population effects in the valence-state photoelectron spectrum. The experimental dispersion of the dichroic D parameter of valence states as a function of the photon excitation energy is compared with its theoretical value calculated by employing a multicentric basis set of B-spline functions and a Kohn-Sham Hamiltonian. The theoretical values are in very good agreement with the experimental data when the conformer population distribution is taken into account. Moreover, thanks to a comparison between experiment and theory, a clear assignment of the molecular orbital character and conformer geometry is given to the features of the photoelectron spectrum. This work indicates in a detailed experimental analysis that CD in photoelectron spectroscopy is an effective technique to disentangle the conformer assignment in photoelectron spectra.

Conformational Effects in Photoelectron Circular Dichroism of Alaninol

Turchini S;Catone D;Contini G;Prosperi T
2009

Abstract

A photoelectron circular dichroism (CD) study of the valence states of 2-amino-1-propanol (alaninol) in the gas phase is presented. The aim of the investigation is to reveal conformer population effects in the valence-state photoelectron spectrum. The experimental dispersion of the dichroic D parameter of valence states as a function of the photon excitation energy is compared with its theoretical value calculated by employing a multicentric basis set of B-spline functions and a Kohn-Sham Hamiltonian. The theoretical values are in very good agreement with the experimental data when the conformer population distribution is taken into account. Moreover, thanks to a comparison between experiment and theory, a clear assignment of the molecular orbital character and conformer geometry is given to the features of the photoelectron spectrum. This work indicates in a detailed experimental analysis that CD in photoelectron spectroscopy is an effective technique to disentangle the conformer assignment in photoelectron spectra.
2009
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
chirality
circular dichroism
conformation analysis
photoelectron spectroscopy
synchrotron radiation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/23501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact