Ion Larmor radius effects on collisionless magnetic reconnection in the presence of a guide field are investigated by means of numerical simulations based on a gyrofluid model for compressible plasmas. Compressibility along the magnetic field is seen to favour the distribution of ion guiding center density along the neutral line, rather than along the separatrices, unlike the electron density. On the other hand, increasing ion temperature reduces the intensity of localized ion guiding center flows that develop in the direction parallel to the guide field. Numerical simulations suggest that the width of these bar-shaped velocity layers scale linearly with the ion Larmor radius. The increase of ion temperature radius causes also a reduction of the electron parallel velocity. As a consequence, it is found that the cusp-like current profiles distinctive of non-dissipative reconnection are strongly attenuated. The field structures are interpreted in terms of the behavior of the four topological invariants of the system. Two of these are seen to behave similarly to invariants of simpler models that do not account for parallel ion flow. The other two exhibit different structures, partly as a consequence of the small electron/ion mass ratio. The origin of these invariants at the gyrokinetic level is also discussed. The investigation of the field structures is complemented by an analysis of the energetics of the system.

Numerical investigation of a compressible gyrofluid model for collisionless magnetic reconnection

L. Comisso;D. Grasso;E. Tassi;
2012

Abstract

Ion Larmor radius effects on collisionless magnetic reconnection in the presence of a guide field are investigated by means of numerical simulations based on a gyrofluid model for compressible plasmas. Compressibility along the magnetic field is seen to favour the distribution of ion guiding center density along the neutral line, rather than along the separatrices, unlike the electron density. On the other hand, increasing ion temperature reduces the intensity of localized ion guiding center flows that develop in the direction parallel to the guide field. Numerical simulations suggest that the width of these bar-shaped velocity layers scale linearly with the ion Larmor radius. The increase of ion temperature radius causes also a reduction of the electron parallel velocity. As a consequence, it is found that the cusp-like current profiles distinctive of non-dissipative reconnection are strongly attenuated. The field structures are interpreted in terms of the behavior of the four topological invariants of the system. Two of these are seen to behave similarly to invariants of simpler models that do not account for parallel ion flow. The other two exhibit different structures, partly as a consequence of the small electron/ion mass ratio. The origin of these invariants at the gyrokinetic level is also discussed. The investigation of the field structures is complemented by an analysis of the energetics of the system.
2012
Istituto dei Sistemi Complessi - ISC
ELECTRON-DISTRIBUTION FUNCTION
HIGH-TEMPERATURE PLASMAS
HAMILTONIAN RECONNECTION
NONLINEAR DYNAMICS
SAWTOOTH CRASH
File in questo prodotto:
File Dimensione Formato  
prod_197766-doc_43115.pdf

solo utenti autorizzati

Descrizione: Numerical investigation of a compressible gyrofluid model for collisionless magnetic reconnection
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/236059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact