Ab initio molecular dynamics simulations of a recently proposed cobalt-based catalyst for water oxidation provide insight into the properties of protons at the water/oxide interface. Calculations and X-ray absorption spectroscopy data indicate a cubane-like structure of the catalyst, support the occurrence of protonated mu2-O atoms, suggest deprotonated mu3-O atoms and the presence of sites promoting low-barrier hydrogen bonds.

Protonation states in a cobalt-oxide catalyst for water oxidation: fine comparison of ab initio molecular dynamics and X-ray absorption spectroscopy results

Mattioli G;Amore Bonapasta A;
2011

Abstract

Ab initio molecular dynamics simulations of a recently proposed cobalt-based catalyst for water oxidation provide insight into the properties of protons at the water/oxide interface. Calculations and X-ray absorption spectroscopy data indicate a cubane-like structure of the catalyst, support the occurrence of protonated mu2-O atoms, suggest deprotonated mu3-O atoms and the presence of sites promoting low-barrier hydrogen bonds.
2011
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/23608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact