The rigidification of ?-conjugated segments represents a feasible tactic towards energy-level engineering of organic D-?-A dyes in mesoscopic titania solar cells. In this work, comparions of four dyes with the di(3-hexylthiophene), dihexyldithienosilole, dihexylcyclopentadithiophene and N-hexyldithienopyrrole linkers have revealed some general influences of ?-linker rigidification on the optoelectronic features of titania solar cells employing a cobalt(II/III) redox electrolyte, in terms of energetic and kinetic viewpoints. Compared to a dye with the di(3-hexylthiophene) linker, its three counterparts with rigidified dithiophene blocks present bathochromic and hyperchromic absorptions of solar photons. Transient absorption measurements have shown that the incorporation of Si-, C- and N-bridged dithiophene segments decelerates the dye regeneration kinetics. The rigidification of ?-conjugated dithiophene linkers brings forth a general open-circuit photovoltage diminishment, in the range from 60 to 190 mV. Further insightful impedance analyses have disclosed that the open-circuit photovoltage reduction, due to the ?-linker alternation from di(3-hexylthiophene) to N-hexyldithienopyrrole, is predominantly caused by an adverse downward displacement of the titania conduction band edge, despite a positive contribution from attenuated charge recombination at the titania/electrolyte interface.

Joint electrical, photophysical and computational studies on D-pi-A dye sensitized solar cells: the impacts of dithiophene rigidification

Filippo De Angelis;
2011

Abstract

The rigidification of ?-conjugated segments represents a feasible tactic towards energy-level engineering of organic D-?-A dyes in mesoscopic titania solar cells. In this work, comparions of four dyes with the di(3-hexylthiophene), dihexyldithienosilole, dihexylcyclopentadithiophene and N-hexyldithienopyrrole linkers have revealed some general influences of ?-linker rigidification on the optoelectronic features of titania solar cells employing a cobalt(II/III) redox electrolyte, in terms of energetic and kinetic viewpoints. Compared to a dye with the di(3-hexylthiophene) linker, its three counterparts with rigidified dithiophene blocks present bathochromic and hyperchromic absorptions of solar photons. Transient absorption measurements have shown that the incorporation of Si-, C- and N-bridged dithiophene segments decelerates the dye regeneration kinetics. The rigidification of ?-conjugated dithiophene linkers brings forth a general open-circuit photovoltage diminishment, in the range from 60 to 190 mV. Further insightful impedance analyses have disclosed that the open-circuit photovoltage reduction, due to the ?-linker alternation from di(3-hexylthiophene) to N-hexyldithienopyrrole, is predominantly caused by an adverse downward displacement of the titania conduction band edge, despite a positive contribution from attenuated charge recombination at the titania/electrolyte interface.
2011
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/236216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact