The problem of state estimation for a class of non-linear systems with Lipschitz non-linearities is addressed using sliding-mode estimators. Stability conditions have been found to guarantee asymptotic convergence to zero of the estimation error in the absence of noise and non-divergence if the state perturbations and measurement noise are bounded. A method is proposed to find a suitable solution to the algebraic Riccati equation on which the design of the estimator is based. The performance of the resulting sliding-mode filter minimizes an upper bound on the asymptotic estimation error. Based on such an approach, a sliding-mode estimator may be designed so as to outperform the extended Kalman filter in practical applications with models affected by uncertainty and strong, possibly unknown non-linearities, as shown by means of simulations.

Sliding-mode estimators for a class of nonlinear systems affected by bounded disturbances

2003

Abstract

The problem of state estimation for a class of non-linear systems with Lipschitz non-linearities is addressed using sliding-mode estimators. Stability conditions have been found to guarantee asymptotic convergence to zero of the estimation error in the absence of noise and non-divergence if the state perturbations and measurement noise are bounded. A method is proposed to find a suitable solution to the algebraic Riccati equation on which the design of the estimator is based. The performance of the resulting sliding-mode filter minimizes an upper bound on the asymptotic estimation error. Based on such an approach, a sliding-mode estimator may be designed so as to outperform the extended Kalman filter in practical applications with models affected by uncertainty and strong, possibly unknown non-linearities, as shown by means of simulations.
2003
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
state estimation
filtering
sliding mode
nonlinear sysstems
optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/23634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact