A simple microelectromechanical systems technology for wafer-scale integration of tunable vertical-cavity surface-emitting lasers (VCSELs) is presented. The key element is a self-aligned reflow process to form photoresist droplets, which serve as sacrificial layer and preform for a curved micromirror. Using a 3-D electromagnetic model, the half-symmetric cavity is optimized for singlemode emission. The technology is demonstrated for electrically pumped, short-wavelength (850 nm) tunable VCSELs, but is transferable to other wavelengths and material systems. Fabricated devices with 10 ?m large current aperture are singlemode and tunable over 24 nm. An improved high-speed design with reduced parasitic capacitance enables direct modulation with 3 dB-bandwidths up to 6 GHz and data transmission at 5 Gbit/s. Small signal analysis shows that the intrinsic parameters (resonance frequency and damping) are wavelength dependent through the differential gain.
Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process
Pierluigi Debernardi;
2012
Abstract
A simple microelectromechanical systems technology for wafer-scale integration of tunable vertical-cavity surface-emitting lasers (VCSELs) is presented. The key element is a self-aligned reflow process to form photoresist droplets, which serve as sacrificial layer and preform for a curved micromirror. Using a 3-D electromagnetic model, the half-symmetric cavity is optimized for singlemode emission. The technology is demonstrated for electrically pumped, short-wavelength (850 nm) tunable VCSELs, but is transferable to other wavelengths and material systems. Fabricated devices with 10 ?m large current aperture are singlemode and tunable over 24 nm. An improved high-speed design with reduced parasitic capacitance enables direct modulation with 3 dB-bandwidths up to 6 GHz and data transmission at 5 Gbit/s. Small signal analysis shows that the intrinsic parameters (resonance frequency and damping) are wavelength dependent through the differential gain.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.