The effects of electromigration in metal thin films is studied by means of atomistic Monte Carlo simulations. The simulator is based on a model of atom diffusion particularly suited to deal with polycrystalline three-dimensional films. Interatomic interactions are estimated by means of a simplified Morse potential while the driving force exerted by the charge carrier flux is represented as a perturbation on the diffusion activation barrier. The local current density is calculated using an equivalent resistor network. The results of simulated stress applied to various samples including a triple point are presented demonstrating the possibility of reproducing the initial stage of void formation with an atomistic model.
Three-dimensional Monte Carlo Simulations of electromigration in polycrystalline thin films
Piotto M
2000
Abstract
The effects of electromigration in metal thin films is studied by means of atomistic Monte Carlo simulations. The simulator is based on a model of atom diffusion particularly suited to deal with polycrystalline three-dimensional films. Interatomic interactions are estimated by means of a simplified Morse potential while the driving force exerted by the charge carrier flux is represented as a perturbation on the diffusion activation barrier. The local current density is calculated using an equivalent resistor network. The results of simulated stress applied to various samples including a triple point are presented demonstrating the possibility of reproducing the initial stage of void formation with an atomistic model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


