The aim of this study was to model in mice the association between metabolic syndrome and the administration of atypical antipsychotic (AAP). Two dosages (4 and 8 mg/kg per day) of olanzapine (OL) were infused in 36 female mice for 30 days by osmotic mini-pumps. This study was also designed to further extend the implications raised in other experiments by our model of AAP-induced metabolic dysregulation. Through the use of the osmotic mini-pumps, this model is aimed to circumvent the shorter (than in humans) half-life of AAPs in rodents and to chronically administer OL by a reliable and less disturbing method. Indirect calorimetry was used to evaluate metabolic rate (MR) and respiratory exchange ratio together with weight and caloric intake. Serum insulin, leptin, and glucose tolerance (oral glucose tolerance test) were assessed. Pancreatic beta cells insulin levels, periuterine and liver fat content were also analyzed. Olanzapine-infused mice exhibited a reduction of overall MR (kilojoule per hour) and resting MR and respiratory exchange ratio, with periuterine fat significantly enlarged. All metabolic alterations were detected at the highest dose, with major effects found on weight gain and hyperphagia. Impaired glucose metabolism, associated with hyperinsulinemia and hyperleptinemia were found. Insulin resistance was evidenced by the raise of HOMA-IR index. Increased insulin and lipid storage were detected at pancreatic and hepatic levels respectively. These findings illustrate the development of a cluster of risk factors (metabolic syndrome) and, for the first time, a decrease of energy expenditure (MR) due to chronic OL infusion

30 Days of continuous olanzapine infusion determines energy imbalance, glucose intolerance, insulin resistance, and dyslipidemia in mice

Coccurello R;Conti R;Moles A
2009

Abstract

The aim of this study was to model in mice the association between metabolic syndrome and the administration of atypical antipsychotic (AAP). Two dosages (4 and 8 mg/kg per day) of olanzapine (OL) were infused in 36 female mice for 30 days by osmotic mini-pumps. This study was also designed to further extend the implications raised in other experiments by our model of AAP-induced metabolic dysregulation. Through the use of the osmotic mini-pumps, this model is aimed to circumvent the shorter (than in humans) half-life of AAPs in rodents and to chronically administer OL by a reliable and less disturbing method. Indirect calorimetry was used to evaluate metabolic rate (MR) and respiratory exchange ratio together with weight and caloric intake. Serum insulin, leptin, and glucose tolerance (oral glucose tolerance test) were assessed. Pancreatic beta cells insulin levels, periuterine and liver fat content were also analyzed. Olanzapine-infused mice exhibited a reduction of overall MR (kilojoule per hour) and resting MR and respiratory exchange ratio, with periuterine fat significantly enlarged. All metabolic alterations were detected at the highest dose, with major effects found on weight gain and hyperphagia. Impaired glucose metabolism, associated with hyperinsulinemia and hyperleptinemia were found. Insulin resistance was evidenced by the raise of HOMA-IR index. Increased insulin and lipid storage were detected at pancreatic and hepatic levels respectively. These findings illustrate the development of a cluster of risk factors (metabolic syndrome) and, for the first time, a decrease of energy expenditure (MR) due to chronic OL infusion
2009
Istituto di Neuroscienze - IN -
Olanzapine
AAP
Obesity
Insulin resistance
File in questo prodotto:
File Dimensione Formato  
prod_38689-doc_32880.pdf

solo utenti autorizzati

Descrizione: 30 Days of continuous olanzapine infusion determines energy imbalance, glucose intolerance, insulin resistance, and dyslipidemia in mice
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/23684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 39
social impact