Indium sulphide has been extensively investigated as a component for different kind of photovoltaic devices (organic-inorganic hybrid devices, all inorganic, dye sensitized cells). In this paper, we have optimised the growth conditions of indium sulphide thin films by means of a low cost, versatile deposition technique, like spray pyrolysis. The quality of the deposited films has been characterised bymicro-Raman, vis-UV spectroscopy, and atomic force microscopy. Substrate deposition temperature and different postdeposition annealing conditions have been investigated in order to obtain information about the quality of the obtained compound (which crystalline or amorphous phases are present) and the morphology of the deposited films. We have shown that the deposition temperature influences strongly the amount of amorphous phase and the roughness of the indium sulphide films. Optimised postdeposition annealing treatments can strongly improve the final amount of the beta phase almost independently from the percentage of the amorphous phase present in the as deposited films.

Optimised In2S3 Thin Films Deposited by Spray Pyrolysis

Giampiero Ruani
2012

Abstract

Indium sulphide has been extensively investigated as a component for different kind of photovoltaic devices (organic-inorganic hybrid devices, all inorganic, dye sensitized cells). In this paper, we have optimised the growth conditions of indium sulphide thin films by means of a low cost, versatile deposition technique, like spray pyrolysis. The quality of the deposited films has been characterised bymicro-Raman, vis-UV spectroscopy, and atomic force microscopy. Substrate deposition temperature and different postdeposition annealing conditions have been investigated in order to obtain information about the quality of the obtained compound (which crystalline or amorphous phases are present) and the morphology of the deposited films. We have shown that the deposition temperature influences strongly the amount of amorphous phase and the roughness of the indium sulphide films. Optimised postdeposition annealing treatments can strongly improve the final amount of the beta phase almost independently from the percentage of the amorphous phase present in the as deposited films.
2012
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
SOLAR-CELLS
INDIUM SULFIDE
EFFICIENCY
RAMAN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/236920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact