The interaction of a 3×1019 W/cm2 laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude ~104 A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.

Laser-driven ultrafast field propagation on solid surfaces

Macchi A;
2009

Abstract

The interaction of a 3×1019 W/cm2 laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude ~104 A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.
2009
INFM (attivo dal 18/11/1923 al 31/12/2021)
laser-plasma interactions
proton probing technique
particle-in-cell simulations
File in questo prodotto:
File Dimensione Formato  
prod_184901-doc_32100.pdf

solo utenti autorizzati

Descrizione: Laser-Driven Ultrafast Field Propagation on Solid Surfaces
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/236929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 105
social impact