The structure, stability, and conformational dynamics of an assembly of two pentameric bundles made of collagen-like triple helical segments are explored using 1.2 ns molecular dynamics simulations in three environments: 8.0% (v/v) formaldehyde/water solution, 1.4% (v/v) gallic acid/water solution, and pure water. Stable supramolecular arrangements, where the two collagen units are very close to each other at interacting distances, are identified via docking and energy minimization procedures. Analysis of the interaction with formaldehyde and gallic acid suggests that they perturb the protein in a similar way depending on hydrogenbonding capability, hydrophobic association properties, and the size and concentration of the compound.
Towards the Supramolecular Structure of Collagen: a Molecular Dynamics Approach
Susanna Monti;Simona Bronco;
2005
Abstract
The structure, stability, and conformational dynamics of an assembly of two pentameric bundles made of collagen-like triple helical segments are explored using 1.2 ns molecular dynamics simulations in three environments: 8.0% (v/v) formaldehyde/water solution, 1.4% (v/v) gallic acid/water solution, and pure water. Stable supramolecular arrangements, where the two collagen units are very close to each other at interacting distances, are identified via docking and energy minimization procedures. Analysis of the interaction with formaldehyde and gallic acid suggests that they perturb the protein in a similar way depending on hydrogenbonding capability, hydrophobic association properties, and the size and concentration of the compound.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_184918-doc_32154.pdf
non disponibili
Descrizione: Articolo pubblicato
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


