The basic procedure of renormalization group theory is used to split the free energy into a Kadanoff block formation part, and a renormalized block-block interaction part. The study of this redistribution as a function of the scaling parameter s shows that there is a stationarity value s* of s, which turns out to have the same critical behavior as the correlation length. It is suggested that s* can be used as an appropriate measure and definition of the correlation length, even for noncritical regions. The calculation of s* is thereby performed explicitly for the Gaussian, and numerically for the S4 model. A sharp separation between noncorrelated and correlated regimes is also found for the Gaussian model, well above the critical temperature. For the S4 model, the results suggest that ? is characterized by a high-temperature Gaussian branch and by a genuine S4 branch at low temperatures, connected by a "plateau" in the intermediate region.

Correlation length and the scaling parameter in the renormalization group

Degli Esposti Boschi;
1998

Abstract

The basic procedure of renormalization group theory is used to split the free energy into a Kadanoff block formation part, and a renormalized block-block interaction part. The study of this redistribution as a function of the scaling parameter s shows that there is a stationarity value s* of s, which turns out to have the same critical behavior as the correlation length. It is suggested that s* can be used as an appropriate measure and definition of the correlation length, even for noncritical regions. The calculation of s* is thereby performed explicitly for the Gaussian, and numerically for the S4 model. A sharp separation between noncorrelated and correlated regimes is also found for the Gaussian model, well above the critical temperature. For the S4 model, the results suggest that ? is characterized by a high-temperature Gaussian branch and by a genuine S4 branch at low temperatures, connected by a "plateau" in the intermediate region.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/237210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact