Many epitaxial heterostructures of transition metal oxides with perovskite structure can be found in literature, accounting for the great interest on electronic devices based on correlated materials. Within this context, the role of traditional semiconductors (Si, Ge) can be played by SrTiO3, which can become metallic with a carrier concentration as low as 1018 cm-3 and with an electron mobility as high as 104 cm2/(V(DOT)s), comparable to the one commonly found in silicon. First, we studied the dramatic effect of oxygen deficiency on transport properties of SrTiO3-(delta ) homoepitaxial thin films deposited by Pulsed Laser Deposition (PLD) in Ultra High Vacuum (UHV) conditions. Then, we explored the feasibility of employing e-doped strontium titanate as semiconducting layer in field effect Metal-Insulator- Semiconductor (MIS) heterostructures. We deposited MIS epitaxial heterostructures, where the wide band gap insulating layer was made of MgO (Egap approximately equals 8 eV). Field effect measurements performed by an a.c. technique showed an increase in conductance up to 90% at 6 Volts of gate voltage. This promising result could open new perspectives in crystalline oxides electronics.

Strontium titanate field effect heterostructures

IPallecchi;LPellegrino;
2000

Abstract

Many epitaxial heterostructures of transition metal oxides with perovskite structure can be found in literature, accounting for the great interest on electronic devices based on correlated materials. Within this context, the role of traditional semiconductors (Si, Ge) can be played by SrTiO3, which can become metallic with a carrier concentration as low as 1018 cm-3 and with an electron mobility as high as 104 cm2/(V(DOT)s), comparable to the one commonly found in silicon. First, we studied the dramatic effect of oxygen deficiency on transport properties of SrTiO3-(delta ) homoepitaxial thin films deposited by Pulsed Laser Deposition (PLD) in Ultra High Vacuum (UHV) conditions. Then, we explored the feasibility of employing e-doped strontium titanate as semiconducting layer in field effect Metal-Insulator- Semiconductor (MIS) heterostructures. We deposited MIS epitaxial heterostructures, where the wide band gap insulating layer was made of MgO (Egap approximately equals 8 eV). Field effect measurements performed by an a.c. technique showed an increase in conductance up to 90% at 6 Volts of gate voltage. This promising result could open new perspectives in crystalline oxides electronics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/237400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact