We present a simple and non-empirical method to determine optimal scaling coefficients, within the (spin-component)-scaled MP2 approach, for calculating intermolecular potential energies of noncovalently-interacting systems. The method is based on an observed proportionality between (spin-component) MP2 and CCSD(T) energies for a wide range of intermolecular distances and allows us to compute with high accuracy a large portion of the dissociation curve at the cost of a single CCSD(T) calculation. The accuracy of the present procedure is assessed for a series of noncovalently-interacting test systems: the obtained results reproduce CCSD(T) quality in all cases and definitely outperform conventional MP2, CCSD and SCS-MP2 results. The difficult case of the beryllium dimer is also considered.
A simple non-empirical procedure for spin-component-scaled MP2 methods applied to the calculation of the dissociation energy curve of noncovalently-interacting systems
E Fabiano;F Della Sala
2013
Abstract
We present a simple and non-empirical method to determine optimal scaling coefficients, within the (spin-component)-scaled MP2 approach, for calculating intermolecular potential energies of noncovalently-interacting systems. The method is based on an observed proportionality between (spin-component) MP2 and CCSD(T) energies for a wide range of intermolecular distances and allows us to compute with high accuracy a large portion of the dissociation curve at the cost of a single CCSD(T) calculation. The accuracy of the present procedure is assessed for a series of noncovalently-interacting test systems: the obtained results reproduce CCSD(T) quality in all cases and definitely outperform conventional MP2, CCSD and SCS-MP2 results. The difficult case of the beryllium dimer is also considered.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.