The rotational spectra of five isotopologues (normal and all monosubstituted 13C species) of methylpyruvate have been measured with the pulsed jet Fourier transform microwave technique. Rotational transitions are split into quintets due to the internal rotations of the two methyl groups. The corresponding barriers to internal rotation have been determined to be V3(H3C-O) = 4.883(8) kJ mol-1 and V3(H3C-C) = 4.657(8) kJ mol-1, respectively. Information on the skeletal heavy atom structure has been obtained from the 15 available rotational constants.

Rotational Spectrum and Internal Dynamics of Methylpyruvate

2013

Abstract

The rotational spectra of five isotopologues (normal and all monosubstituted 13C species) of methylpyruvate have been measured with the pulsed jet Fourier transform microwave technique. Rotational transitions are split into quintets due to the internal rotations of the two methyl groups. The corresponding barriers to internal rotation have been determined to be V3(H3C-O) = 4.883(8) kJ mol-1 and V3(H3C-C) = 4.657(8) kJ mol-1, respectively. Information on the skeletal heavy atom structure has been obtained from the 15 available rotational constants.
2013
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/237899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact