In this paper, we present the results of a hyperspectral airborne and in situ campaign in Montenegro aimed at individuating and monitoring two hazardous materials. They are the residues of the bauxite processing, i.e. red mud, and the asbestos fibers applied in the building materials. We perform laboratory analyses of asbestos-cement, red mud and soil samples collected in the study area for (a) recognizing the dominant minerals using X-Ray Diffraction and X-Ray Fluorescence; (b) identifying the optical characteristics of the samples using a portable field spectrometer; and (c) characterizing their spectral features and remote sensing detection requirements. A least-squares fitting procedure, on the basis of the significant red mud and asbestos-cement reflectance spectral features, was applied to airborne hyperspectral remote sensing data collected over the study area. Results show that hyperspectral remote sensing data can provide an efficient, fast and repeatable tool for mapping and monitoring the diffusion of pollutants providing the location of the hazardous areas to be checked. © 2009 IEEE.
Hyperspectral remote sensing data to map hazardous materials in a rural and industrial district: The Podgorica dwellings case studies
Maria Rosa Cavalli;Pascucci Simone;Pignatti Stefano
2009
Abstract
In this paper, we present the results of a hyperspectral airborne and in situ campaign in Montenegro aimed at individuating and monitoring two hazardous materials. They are the residues of the bauxite processing, i.e. red mud, and the asbestos fibers applied in the building materials. We perform laboratory analyses of asbestos-cement, red mud and soil samples collected in the study area for (a) recognizing the dominant minerals using X-Ray Diffraction and X-Ray Fluorescence; (b) identifying the optical characteristics of the samples using a portable field spectrometer; and (c) characterizing their spectral features and remote sensing detection requirements. A least-squares fitting procedure, on the basis of the significant red mud and asbestos-cement reflectance spectral features, was applied to airborne hyperspectral remote sensing data collected over the study area. Results show that hyperspectral remote sensing data can provide an efficient, fast and repeatable tool for mapping and monitoring the diffusion of pollutants providing the location of the hazardous areas to be checked. © 2009 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


