The observation and study of macroscopic quantum coherence (MQC), i.e. the coherent superposition and evolution of macroscopically distinct quantum states, is of great importance for both our understanding of nature and for quantum engineering, for example in quantum computing. Recently a first indication of MQC in a system of SQUIDs has been indirectly observed by means of spectroscopic techniques. Applications like quantum computing, however, require the manipulation and the observation of the time evolution of the MQC states. We have realized a system of SQUIDs for the study of MQC. Our system, based on trilayer Nb/AlOx/Nb technology, consists of a double rf-SQUID, source of the MQC state, inductively coupled to a non-hysteretic dc-SQUID magnetometer and to a hysteretic dc-SQUID threshold detector, used for the read-out of the magnetic flux state. The magnetometer is used to test and monitor the rf-SQUID behaviour, while the hysteretic dc-SQUID is used to perform fast measurements with a reduced back action on the rf-SQUID. We present measurements performed at 4.2 K and at 20 mK to characterize the single devices and their overall behaviour, and a scheme for the use of a set of SQUIDs as a qubit system.

An integrated system of SQUIDs for the study of macroscopic quantum coherence

M G Castellano;R Leoni;F Chiarello
2001

Abstract

The observation and study of macroscopic quantum coherence (MQC), i.e. the coherent superposition and evolution of macroscopically distinct quantum states, is of great importance for both our understanding of nature and for quantum engineering, for example in quantum computing. Recently a first indication of MQC in a system of SQUIDs has been indirectly observed by means of spectroscopic techniques. Applications like quantum computing, however, require the manipulation and the observation of the time evolution of the MQC states. We have realized a system of SQUIDs for the study of MQC. Our system, based on trilayer Nb/AlOx/Nb technology, consists of a double rf-SQUID, source of the MQC state, inductively coupled to a non-hysteretic dc-SQUID magnetometer and to a hysteretic dc-SQUID threshold detector, used for the read-out of the magnetic flux state. The magnetometer is used to test and monitor the rf-SQUID behaviour, while the hysteretic dc-SQUID is used to perform fast measurements with a reduced back action on the rf-SQUID. We present measurements performed at 4.2 K and at 20 mK to characterize the single devices and their overall behaviour, and a scheme for the use of a set of SQUIDs as a qubit system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/238008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact