The concept of surrogates allows testing results from time series analysis against specified null hypotheses. In application to bivariate model dynamics we here compare different types of surrogates, each designed to test against a different null hypothesis, e.g., an underlying bivariate linear stochastic process. Two measures that aim at a characterization of interdependence between nonlinear deterministic dynamics were used as discriminating statistics. We analyze eight different stochastic and deterministic models not only to demonstrate the power of the surrogates, but also to reveal some pitfalls and limitations.

Bivariate surrogate techniques: Necessity, strengths, and caveats

Thomas Kreuz
2003

Abstract

The concept of surrogates allows testing results from time series analysis against specified null hypotheses. In application to bivariate model dynamics we here compare different types of surrogates, each designed to test against a different null hypothesis, e.g., an underlying bivariate linear stochastic process. Two measures that aim at a characterization of interdependence between nonlinear deterministic dynamics were used as discriminating statistics. We analyze eight different stochastic and deterministic models not only to demonstrate the power of the surrogates, but also to reveal some pitfalls and limitations.
2003
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/238198
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 102
social impact