The first implementation and calculation of anharmonic VCD rotational strengths for solvated systems is reported. Our approach, rooted in the polarizable continuum model (PCM) and in the second-order vibrational perturbation theory (VPT2), permits not only correction for anharmonicity in the signals associated with fundamental transitions but also calculation of rotational strengths of overtones and combination bands. This allows for a more physically consistent comparison between experiment and calculations together with the analysis of spectral regions dominated by anharmonic effects. The developed model is applied to a few test cases, and the computational outcomes are directly compared with experimental data.

Toward Ab Initio Anharmonic Vibrational Circular Dichroism Spectra in the Condensed Phase

Bloino Julien;
2012

Abstract

The first implementation and calculation of anharmonic VCD rotational strengths for solvated systems is reported. Our approach, rooted in the polarizable continuum model (PCM) and in the second-order vibrational perturbation theory (VPT2), permits not only correction for anharmonicity in the signals associated with fundamental transitions but also calculation of rotational strengths of overtones and combination bands. This allows for a more physically consistent comparison between experiment and calculations together with the analysis of spectral regions dominated by anharmonic effects. The developed model is applied to a few test cases, and the computational outcomes are directly compared with experimental data.
2012
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
solvent effects
polarizable continuum model
chiroptical spectroscopy
vibrational optical activity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/238255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 44
social impact