We demonstrate selective electrodeposition of magnetic layers on doped semiconductors resulting in a self-aligned pattern which replicates the doping pattern in the semiconductor surface. A Schottky barrier forms at the interface between a semiconductor substrate and the electrolyte, which upon application of a cathodic potential is biased in the forward (reverse) direction for n- or p-type semiconductors, respectively. Electron transfer from an n-type semiconductor is thus possible, while breakdown of the Schottky barrier would be necessary for deposition on a p-type substrate. The process will thus be spatially selective on a lateral modulation of the substrate doping. As an example we demonstrate the deposition of Co on GaAs.

Selective metal electrodeposition through doping modulation of semiconductor surfaces

Sorba L;Biasiol G;Heun S
2005

Abstract

We demonstrate selective electrodeposition of magnetic layers on doped semiconductors resulting in a self-aligned pattern which replicates the doping pattern in the semiconductor surface. A Schottky barrier forms at the interface between a semiconductor substrate and the electrolyte, which upon application of a cathodic potential is biased in the forward (reverse) direction for n- or p-type semiconductors, respectively. Electron transfer from an n-type semiconductor is thus possible, while breakdown of the Schottky barrier would be necessary for deposition on a p-type substrate. The process will thus be spatially selective on a lateral modulation of the substrate doping. As an example we demonstrate the deposition of Co on GaAs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/238327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact