The compositional and structural rearrangements at the catalyst surface during chemical reactions are issues of great importance for understanding and modeling the catalytic processes. Low-energy electron microscopy and photoelectron spectromicroscopy studies of the real-space structure and composition of a Au-modified Rh(110) surface during water formation reveal reorganization processes due to Au mass transport triggered by the propagating reaction fronts. The temporal evolution of the surface reaction results in a 'patterned' surface consisting of separated Au-rich and Au-poor phases with different oxygen coverage, Rh surface structure, and reactivity. The experimental results are complemented by ab initio electronic-structure calculations of the O and Au adsorption phases, which demonstrate that the reorganization of the Au adlayer by the propagating reaction fronts is an energetically driven process. Our findings suggest that reaction-induced spatial inhomogeneity in the surface composition and structure is a common feature of metal catalysts modified with adatoms which become mobile under reaction conditions.

Energetically driven reorganization of a modified catalytic surface under reaction conditions

Heun S;
2005

Abstract

The compositional and structural rearrangements at the catalyst surface during chemical reactions are issues of great importance for understanding and modeling the catalytic processes. Low-energy electron microscopy and photoelectron spectromicroscopy studies of the real-space structure and composition of a Au-modified Rh(110) surface during water formation reveal reorganization processes due to Au mass transport triggered by the propagating reaction fronts. The temporal evolution of the surface reaction results in a 'patterned' surface consisting of separated Au-rich and Au-poor phases with different oxygen coverage, Rh surface structure, and reactivity. The experimental results are complemented by ab initio electronic-structure calculations of the O and Au adsorption phases, which demonstrate that the reorganization of the Au adlayer by the propagating reaction fronts is an energetically driven process. Our findings suggest that reaction-induced spatial inhomogeneity in the surface composition and structure is a common feature of metal catalysts modified with adatoms which become mobile under reaction conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/238328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact