This paper presents a new AlN-based MEMS devices suitable for vibrational energy harvesting applications. Due to their particular shape and unlike traditional cantilever which efficiently harvest energy only if subjected to stimulus in the proper direction, the proposed devices have 3D generation capabilities solving the problem of device orientation and placement in real applications. Thanks to their particular shape, the realized devices present more than one fundamental resonance frequencies in a range comprised between 500 Hz and 1.5 kHz, with a voltage generation higher than 300?V and an output power up to 0.4 pW for single MEMS device.

AlN-based MEMS devices for vibrational Energy harvesting applications

MT Todaro;A Passaseo;M De Vittorio
2011

Abstract

This paper presents a new AlN-based MEMS devices suitable for vibrational energy harvesting applications. Due to their particular shape and unlike traditional cantilever which efficiently harvest energy only if subjected to stimulus in the proper direction, the proposed devices have 3D generation capabilities solving the problem of device orientation and placement in real applications. Thanks to their particular shape, the realized devices present more than one fundamental resonance frequencies in a range comprised between 500 Hz and 1.5 kHz, with a voltage generation higher than 300?V and an output power up to 0.4 pW for single MEMS device.
2011
Istituto di Nanotecnologia - NANOTEC
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/238448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact