Copper colloidal nanoparticles are obtained by laser ablation in aqueous solutions of ligands by nanosecond laser pulses at 532 and 1064 nm and examined by localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectroscopy, along with transmission electron microscopy (TEM) and zeta potential measurements. This fabrication method, besides providing SERS-active substrates without spectral interferences of reagents, as it generally occurs for the chemical reduction of metal ions, allows obtaining colloidal suspensions which are stable in time because the copper particles are capped by ligand molecules as long as they are formed by laser ablation. This prevents aggregation among metal nanoparticles and probably reduces overall oxidation of the copper surface.

Surface-Enhanced Raman Scattering from Copper Nanoparticles Obtained by Laser Ablation

Maurizio Muniz-Miranda;Emilia Giorgetti
2011

Abstract

Copper colloidal nanoparticles are obtained by laser ablation in aqueous solutions of ligands by nanosecond laser pulses at 532 and 1064 nm and examined by localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectroscopy, along with transmission electron microscopy (TEM) and zeta potential measurements. This fabrication method, besides providing SERS-active substrates without spectral interferences of reagents, as it generally occurs for the chemical reduction of metal ions, allows obtaining colloidal suspensions which are stable in time because the copper particles are capped by ligand molecules as long as they are formed by laser ablation. This prevents aggregation among metal nanoparticles and probably reduces overall oxidation of the copper surface.
2011
Istituto dei Sistemi Complessi - ISC
ASR - Unità Relazioni Internazionali
METAL COLLOIDS
CU NANOPARTICLES
SERS
GOLD NANOPARTICLES
OPTICAL-PROPERTIES
File in questo prodotto:
File Dimensione Formato  
prod_194319-doc_44521.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/238879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 145
social impact