Standard algorithms used for the numerical integration of the Langevin equation require that interactions should slowly vary during the integration time-step. This in not the case for hard-body systems, where there is no clear-cut between the correlation time of the noise and the time-scale of the interactions. Starting with a short time approximation of the Smoluchowski equation, we introduce an algorithm for the simulation of the over-damped Brownian dynamics of polydisperse hard-spheres in absence of hydrodynamic interactions and briefly discuss the extension to the case of external drifts.

Brownian dynamics simulation of polydisperse hard spheres

Antonio Scala
2013

Abstract

Standard algorithms used for the numerical integration of the Langevin equation require that interactions should slowly vary during the integration time-step. This in not the case for hard-body systems, where there is no clear-cut between the correlation time of the noise and the time-scale of the interactions. Starting with a short time approximation of the Smoluchowski equation, we introduce an algorithm for the simulation of the over-damped Brownian dynamics of polydisperse hard-spheres in absence of hydrodynamic interactions and briefly discuss the extension to the case of external drifts.
2013
Istituto dei Sistemi Complessi - ISC
Brownian dynamics
hard spheres
File in questo prodotto:
File Dimensione Formato  
prod_197947-doc_44892.pdf

solo utenti autorizzati

Descrizione: Brownian dynamics simulation of polydisperse hard spheres
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 239.68 kB
Formato Adobe PDF
239.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/239626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact