We report on novel, highly-sensitive methods for interrogation of fibre Bragg gratings (FBGs) as well as high-finesse fibre resonators. Basically, the strain detection technique relies on radio-frequency modulation of a telecom distributed-feedback diode laser with phase-sensitive detection of the sensor-reflected signals. In a first set-up, the optical power from a fibre grating is demodulated at multiples of the sideband frequency and a dispersive signal, which monitors thermal and mechanical stress on the FBG, is generated. A fast Fourier transform analysis of this signal revealed the possibility of detecting dynamic strains up to 20 kHz, this limit being set only by the bandwidth of the test device. Minimum detectable strain levels below 200 ne Hz(-1/2), in the quasi-static domain (0.5-2 Hz), and between 1 and 4 n epsilon Hz(-1/2) in the 0.4-1 kHz range, were achieved. A different approach is based on an in-fibre Fabry-Perot cavity, made of an FBG pair with very high peak reflectivity (>99%). In this scheme, the diode laser was actively frequency-locked to the FBG cavity, using the Pound-Drever-Hall technique. The resulting error signal was used as a monitor of the strain suffered by the intra-cavity fibre. We demonstrated that a sensitivity gain of at least one order of magnitude could be obtained by this system in a very compact design. Analysis and quantification of the main limiting factors were also carried out in both cases.

Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques

Gagliardi G;Salza M;Ferraro P;De Natale P
2006

Abstract

We report on novel, highly-sensitive methods for interrogation of fibre Bragg gratings (FBGs) as well as high-finesse fibre resonators. Basically, the strain detection technique relies on radio-frequency modulation of a telecom distributed-feedback diode laser with phase-sensitive detection of the sensor-reflected signals. In a first set-up, the optical power from a fibre grating is demodulated at multiples of the sideband frequency and a dispersive signal, which monitors thermal and mechanical stress on the FBG, is generated. A fast Fourier transform analysis of this signal revealed the possibility of detecting dynamic strains up to 20 kHz, this limit being set only by the bandwidth of the test device. Minimum detectable strain levels below 200 ne Hz(-1/2), in the quasi-static domain (0.5-2 Hz), and between 1 and 4 n epsilon Hz(-1/2) in the 0.4-1 kHz range, were achieved. A different approach is based on an in-fibre Fabry-Perot cavity, made of an FBG pair with very high peak reflectivity (>99%). In this scheme, the diode laser was actively frequency-locked to the FBG cavity, using the Pound-Drever-Hall technique. The resulting error signal was used as a monitor of the strain suffered by the intra-cavity fibre. We demonstrated that a sensitivity gain of at least one order of magnitude could be obtained by this system in a very compact design. Analysis and quantification of the main limiting factors were also carried out in both cases.
2006
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto Nazionale di Ottica - INO
Fiber Bragg gratings
Strain measurements
Diode laser
Frequency modulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/23989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact