The dynamics of electric field generation and radial acceleration of ions by a laser pulse of relativistic intensity propagating in an underdense plasma has been investigated using a one-dimensional electrostatic, ponderomotive model developed to interpret experimental measurements of electric fields (Kar S et al 2007 New J. Phys. 9 402). Ions are spatially focused at the edge of the charge-displacement channel, leading to hydrodynamical breaking, which in turn causes the heating of electrons and an 'echo' effect in the electric field. The onset of complete electron depletion in the central region of the channel leads to a smooth transition to a 'Coulomb explosion' regime and a saturation of ion acceleration.
Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse
A Macchi;
2009
Abstract
The dynamics of electric field generation and radial acceleration of ions by a laser pulse of relativistic intensity propagating in an underdense plasma has been investigated using a one-dimensional electrostatic, ponderomotive model developed to interpret experimental measurements of electric fields (Kar S et al 2007 New J. Phys. 9 402). Ions are spatially focused at the edge of the charge-displacement channel, leading to hydrodynamical breaking, which in turn causes the heating of electrons and an 'echo' effect in the electric field. The onset of complete electron depletion in the central region of the channel leads to a smooth transition to a 'Coulomb explosion' regime and a saturation of ion acceleration.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_248135-doc_65829.pdf
solo utenti autorizzati
Descrizione: Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


