For different settings of a control parameter, a chaotic system can go from a region with two separate stable attractors (generalized bistability) to a crisis where a chaotic attractor expands, colliding with an unstable orbit. In the bistable regime jumps between independent attractors are mediated by external perturbations; above the crisis, the dynamics includes visits to regions formerly belonging to the unstable orbits and this appears as random bursts of amplitude jumps. We introduce a control method which suppresses the jumps in both cases by filtering the specific frequency content of one of the two dynamical objects. The method is tested both in a model and in a real experiment with a CO2 laser.
Attractor selection in chaotic dynamics
Meucci R;
2005
Abstract
For different settings of a control parameter, a chaotic system can go from a region with two separate stable attractors (generalized bistability) to a crisis where a chaotic attractor expands, colliding with an unstable orbit. In the bistable regime jumps between independent attractors are mediated by external perturbations; above the crisis, the dynamics includes visits to regions formerly belonging to the unstable orbits and this appears as random bursts of amplitude jumps. We introduce a control method which suppresses the jumps in both cases by filtering the specific frequency content of one of the two dynamical objects. The method is tested both in a model and in a real experiment with a CO2 laser.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_57966-doc_37409.pdf
non disponibili
Descrizione: Attractor selection in chaotic dynamics
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


