Electro-spray deposition (ESD) was applied to fabricate solution processed donor-acceptor bulk heterojunction organic photovoltaic devices with multi-layer structure. Solvent effect was observed when using different organic solvents. Power conversion efficiency (PCE) of the devices prepared from dichlorobenzene increased dramatically comparing to the ones from chloroform, owing to improved homogeneity of the films. ESD enabled us to fabricate solution processed multi-layer (donor/donor:acceptor/acceptor) devices with simple successive deposition steps. Energy Dispersive X-ray Reflectometry analysis confirmed distinct three layered structure of the active layers. Solar cell device parameters of the trilayer devices were compared to single layer devices and those of spin coated devices with the same donor:acceptor ratio and film thickness. Post-thermal treatment results showed that after annealing at 125 °C, trilayer devices exhibited best performance with the maximum PCE of 2.17%.
Realization of solution processed multi-layer bulk heterojunction organic solar cells by electro-spray deposition
Amanda Generosi;Barbara Paci;
2012
Abstract
Electro-spray deposition (ESD) was applied to fabricate solution processed donor-acceptor bulk heterojunction organic photovoltaic devices with multi-layer structure. Solvent effect was observed when using different organic solvents. Power conversion efficiency (PCE) of the devices prepared from dichlorobenzene increased dramatically comparing to the ones from chloroform, owing to improved homogeneity of the films. ESD enabled us to fabricate solution processed multi-layer (donor/donor:acceptor/acceptor) devices with simple successive deposition steps. Energy Dispersive X-ray Reflectometry analysis confirmed distinct three layered structure of the active layers. Solar cell device parameters of the trilayer devices were compared to single layer devices and those of spin coated devices with the same donor:acceptor ratio and film thickness. Post-thermal treatment results showed that after annealing at 125 °C, trilayer devices exhibited best performance with the maximum PCE of 2.17%.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.