We report the generation and the tomographic analysis of novel quantum states of light generated by the controlled addition and subtraction of single photons to and from a classical and fully incoherent thermal light field. Time-domain quantum tomography is used to thoroughly investigate the character of the resulting states. Several different criteria are employed to test and quantify nonclassicality of photon-added thermal states, while the peculiar features concerning the mean photon number of photon-subtracted thermal states are clearly observed.
Manipulating thermal light states by the controlled addition and subtraction of single photons
Zavatta A;Bellini M
2008
Abstract
We report the generation and the tomographic analysis of novel quantum states of light generated by the controlled addition and subtraction of single photons to and from a classical and fully incoherent thermal light field. Time-domain quantum tomography is used to thoroughly investigate the character of the resulting states. Several different criteria are employed to test and quantify nonclassicality of photon-added thermal states, while the peculiar features concerning the mean photon number of photon-subtracted thermal states are clearly observed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


