Vortices have been observed on Saturn since the years of the Voyager's missions. Successively high resolution Cassini's images, provided by the Imaging Science Subsystem (ISS) cameras, permitted longer periods of observation of the Saturn's dynamical structures, included a longlived cyclone in the southern hemisphere (del Río-Gaztelurrutia et al., 2010). The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini spacecraft on January 4th 2012 has observed an oval structure, about 8000 km in diameter size and 0.87 eccentricity in the Saturn's north hemisphere. The vortex is centered at an average planetocentric latitude of 37.5 °North, inside the storm system detected at the end of 2010 (Fletcher et al, 2011). To find the first occurrence of this vortex we started the examination of the VIMS and ISS databases from the 2010 fall until the end of January 2012. We searched also in the archive of ISS narrow angle (NAC) and wide angle (WAC) cameras, publicly available from the NASA Planetary Data System (PDS) Imaging Node, for those images both in concomitance and time shifted with respect to the VIMS ones. We adopted the same identification criterion used by del Río-Gaztelurrutia et al. (2010), by searching for an oval of analogous dimension in the same zonal region. ISS data helped us in checking the existence of the oval in time periods not covered by VIMS data and in resolving oval's details that we cannot appreciate in the VIMS spectral frames, less spatially resolved than the cameras' corresponding filters. This vortex has been observed at different distances and viewing geometries at least 6 and 5 times by VIMS and ISS, respectively, in the examined time period. We estimate that the first vortex's detection occurred in the first half of January 2011 (ISS) while the last one in January 2012 (VIMS). In this study we aim to determine the oval identity in a univocal way, on the basis of its position and size, in order to monitor both the structure living cycle and its evolution. We describe the position and size of the vortex for each image with the greatest detail by means of different processing and mapping techniques. Our results show that there were some zonal drift and size and shape evolution in the time period of our survey. In a second abstract (Oliva et al., 2012) the results of this study, finalized to check the altitude variation and the optical depth of the cloud at the top of the dynamical structure, are reported.
Cassini VIMS-V observations of a giant dynamical structure in the Saturn's northern hemisphere
M L Moriconi;
2012
Abstract
Vortices have been observed on Saturn since the years of the Voyager's missions. Successively high resolution Cassini's images, provided by the Imaging Science Subsystem (ISS) cameras, permitted longer periods of observation of the Saturn's dynamical structures, included a longlived cyclone in the southern hemisphere (del Río-Gaztelurrutia et al., 2010). The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini spacecraft on January 4th 2012 has observed an oval structure, about 8000 km in diameter size and 0.87 eccentricity in the Saturn's north hemisphere. The vortex is centered at an average planetocentric latitude of 37.5 °North, inside the storm system detected at the end of 2010 (Fletcher et al, 2011). To find the first occurrence of this vortex we started the examination of the VIMS and ISS databases from the 2010 fall until the end of January 2012. We searched also in the archive of ISS narrow angle (NAC) and wide angle (WAC) cameras, publicly available from the NASA Planetary Data System (PDS) Imaging Node, for those images both in concomitance and time shifted with respect to the VIMS ones. We adopted the same identification criterion used by del Río-Gaztelurrutia et al. (2010), by searching for an oval of analogous dimension in the same zonal region. ISS data helped us in checking the existence of the oval in time periods not covered by VIMS data and in resolving oval's details that we cannot appreciate in the VIMS spectral frames, less spatially resolved than the cameras' corresponding filters. This vortex has been observed at different distances and viewing geometries at least 6 and 5 times by VIMS and ISS, respectively, in the examined time period. We estimate that the first vortex's detection occurred in the first half of January 2011 (ISS) while the last one in January 2012 (VIMS). In this study we aim to determine the oval identity in a univocal way, on the basis of its position and size, in order to monitor both the structure living cycle and its evolution. We describe the position and size of the vortex for each image with the greatest detail by means of different processing and mapping techniques. Our results show that there were some zonal drift and size and shape evolution in the time period of our survey. In a second abstract (Oliva et al., 2012) the results of this study, finalized to check the altitude variation and the optical depth of the cloud at the top of the dynamical structure, are reported.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.