Convective precipitation events in northern Italy during 1996 and 1997 are analysed using two infrared-based geosynchronous satellite rainfall estimation methods to verify the level of applicability of the techniques for operational applications in the area, their quantitative results, and relative performances. The Negri-Adler-Wetzel (NAW) and the convective stratiform technique (CST) are applied to METEOSAT's thermal infrared (IR) data. C-band radar reflectivity fields detail the vertical and horizontal structure of the cloud systems, and radar rainfall data are retrieved. Satellite rain areas are checked against simultaneous radar rainfall retrievals through a contingency analysis procedure. A semi-quantitative analysis is presented. Positive brightness temperature differences between water vapour and thermal IR channels are also examined and related to the storms' development stage and rainrate. Results show that NAW and CST perform reasonably in delimiting rain areas during active convection and care should be used in the initial and final development stage when statistical parameters lose most of their significance. NAW tends to overestimate rainfall while CST approaches more closely radar measurements. Most common errors arise from considering only portions of the storm, contamination from cold non-precipitating cloud, and merging of two or more cloud masses of independent origin. Operational applications, though not completely quantitative, are also possible, including positive values of the difference between water vapour and IR brightness temperature.

IR-based satellite and radar rainfall estimates of convective storms over northern Italy

2000

Abstract

Convective precipitation events in northern Italy during 1996 and 1997 are analysed using two infrared-based geosynchronous satellite rainfall estimation methods to verify the level of applicability of the techniques for operational applications in the area, their quantitative results, and relative performances. The Negri-Adler-Wetzel (NAW) and the convective stratiform technique (CST) are applied to METEOSAT's thermal infrared (IR) data. C-band radar reflectivity fields detail the vertical and horizontal structure of the cloud systems, and radar rainfall data are retrieved. Satellite rain areas are checked against simultaneous radar rainfall retrievals through a contingency analysis procedure. A semi-quantitative analysis is presented. Positive brightness temperature differences between water vapour and thermal IR channels are also examined and related to the storms' development stage and rainrate. Results show that NAW and CST perform reasonably in delimiting rain areas during active convection and care should be used in the initial and final development stage when statistical parameters lose most of their significance. NAW tends to overestimate rainfall while CST approaches more closely radar measurements. Most common errors arise from considering only portions of the storm, contamination from cold non-precipitating cloud, and merging of two or more cloud masses of independent origin. Operational applications, though not completely quantitative, are also possible, including positive values of the difference between water vapour and IR brightness temperature.
2000
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Dipartimento di Scienze del Sistema Terra e Tecnologie per l'Ambiente - DSSTTA
satellite
radar
precipitation
storms
infrared
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/241560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact