We consider a quantum spin Hall system in a two-terminal setup, with an extended tunneling contact connecting upper and lower edges. We analyze the effects of this geometry on the backscattering current as a function of voltage, temperature, and strength of the electron interactions. We find that this configuration may be useful to confirm the helical nature of the edge states and to extract their propagation velocity. By comparing with the usual quantum point-contact geometry, we observe that the power-law behaviors predicted for the backscattering current and the linear conductance are recovered for low enough energies, while different power laws also emerge at higher energies

Tunneling between helical edge states through extended contacts

G Dolcetto;M Sassetti
2012

Abstract

We consider a quantum spin Hall system in a two-terminal setup, with an extended tunneling contact connecting upper and lower edges. We analyze the effects of this geometry on the backscattering current as a function of voltage, temperature, and strength of the electron interactions. We find that this configuration may be useful to confirm the helical nature of the edge states and to extract their propagation velocity. By comparing with the usual quantum point-contact geometry, we observe that the power-law behaviors predicted for the backscattering current and the linear conductance are recovered for low enough energies, while different power laws also emerge at higher energies
2012
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/241880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact