Spin-phonon coupling effects, as reflected in phonon frequency shifts between ferromagnetic (FM) and G-type antiferromagnetic (AFM) configurations in cubic CaMnO3, SrMnO3, BaMnO3, LaCrO3, LaFeO3, and La2(CrFe)O6, are investigated using density-functional methods. The calculations are carried out both with a hybrid-functional Heyd-Scuseria-Ernzerhof (HSE) approach and with a DFT + U approach using a U that has been fitted to HSE calculations. The phonon frequency shifts obtained in going from the FM to the AFM spin configuration agree well with those computed directly from the more accurate HSE approach, but are obtained with much less computational effort. We find that in the AMnO3 materials class with A= Ca, Sr, and Ba, this frequency shift decreases as the A cation radius increases for the ? phonons, while it increases for R-point phonons. In LaMO3 with M= Cr, Fe, and Cr/Fe, the phonon frequencies at ? decrease as the spin order changes from AFM to FM for LaCrO3 and LaFeO3, but they increase for the double perovskite La2(CrFe)O6. We discuss these results and the prospects for bulk and superlattice forms of these materials to be useful as multiferroics.

Spin-phonon coupling effects in transition-metal perovskites: A DFT + U and hybrid-functional study

Alessandro Stroppa;Silvia Picozzi;
2012

Abstract

Spin-phonon coupling effects, as reflected in phonon frequency shifts between ferromagnetic (FM) and G-type antiferromagnetic (AFM) configurations in cubic CaMnO3, SrMnO3, BaMnO3, LaCrO3, LaFeO3, and La2(CrFe)O6, are investigated using density-functional methods. The calculations are carried out both with a hybrid-functional Heyd-Scuseria-Ernzerhof (HSE) approach and with a DFT + U approach using a U that has been fitted to HSE calculations. The phonon frequency shifts obtained in going from the FM to the AFM spin configuration agree well with those computed directly from the more accurate HSE approach, but are obtained with much less computational effort. We find that in the AMnO3 materials class with A= Ca, Sr, and Ba, this frequency shift decreases as the A cation radius increases for the ? phonons, while it increases for R-point phonons. In LaMO3 with M= Cr, Fe, and Cr/Fe, the phonon frequencies at ? decrease as the spin order changes from AFM to FM for LaCrO3 and LaFeO3, but they increase for the double perovskite La2(CrFe)O6. We discuss these results and the prospects for bulk and superlattice forms of these materials to be useful as multiferroics.
2012
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/241899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact