We present a simple and fast algorithm for the computation of the Gegenbauer transform, which is known to be very useful in the development of spectral methods for the numerical solution of ordinary and partial differential equations of physical interest. We prove that the coefficients of the expansion of a function f(x) in Gegenbauer (also known as ultraspherical) polynomials coincide with the Fourier coefficients of a suitable integral transform of the function f(x). This allows to compute N Gegenbauer coefficients in O(N log_2 N) operations by means of a single Fast Fourier Transform of the integral transform of f(x). We also show that the inverse Gegenbauer transform is expressible as the Abel-type transform of a suitable Fourier series. This fact produces a novel algorithm for the fast evaluation of Gegenbauer expansions.

The expansion in Gegenbauer polynomials: a simple method for the fast computation of the Gegenbauer coefficients

De Micheli Enrico;
2013

Abstract

We present a simple and fast algorithm for the computation of the Gegenbauer transform, which is known to be very useful in the development of spectral methods for the numerical solution of ordinary and partial differential equations of physical interest. We prove that the coefficients of the expansion of a function f(x) in Gegenbauer (also known as ultraspherical) polynomials coincide with the Fourier coefficients of a suitable integral transform of the function f(x). This allows to compute N Gegenbauer coefficients in O(N log_2 N) operations by means of a single Fast Fourier Transform of the integral transform of f(x). We also show that the inverse Gegenbauer transform is expressible as the Abel-type transform of a suitable Fourier series. This fact produces a novel algorithm for the fast evaluation of Gegenbauer expansions.
2013
Istituto di Biofisica - IBF
Gegenbauer polynomials
Spectral methods
Fourier series
Gegenbauer reconstruction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/242021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact