Cobalt ferrite (CoFe2O4) and magnetite (Fe3O4) nanoparticles suspensions in diethylene glycol were tested as candidate systems for the EPD of CoFe2O4 and Fe3O4. It was found that despite the high stability and high zeta potential of such suspensions and the occurrence of mass transport at the electrode, they are not viable systems for EPD, due to coagulation failure. However, dilution of both suspensions with ethanol caused film coagulation at electric field between 20 and 60 V cm-1. Combinations of electric field and DEG volume fraction in ethanol/suspension mixtures that allow EPD to take place are detailed, and a description of the outcome of EPD trials is provided. A qualitative discussion of the causes of film consolidation in the presence of ethanol is presented.
A Controlled Colloidal Destabilization Approach for the Electrophoretic Deposition (EPD) from Cobalt Ferrite and Magnetite Nanoparticles Suspensions in Diethylene Glycol
Baldisserri Carlo;Gardini Davide;Galassi Carmen
2012
Abstract
Cobalt ferrite (CoFe2O4) and magnetite (Fe3O4) nanoparticles suspensions in diethylene glycol were tested as candidate systems for the EPD of CoFe2O4 and Fe3O4. It was found that despite the high stability and high zeta potential of such suspensions and the occurrence of mass transport at the electrode, they are not viable systems for EPD, due to coagulation failure. However, dilution of both suspensions with ethanol caused film coagulation at electric field between 20 and 60 V cm-1. Combinations of electric field and DEG volume fraction in ethanol/suspension mixtures that allow EPD to take place are detailed, and a description of the outcome of EPD trials is provided. A qualitative discussion of the causes of film consolidation in the presence of ethanol is presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.