The absence of sharp structures in the Auger line shapes of partially filled bands has severely limited the use of electron spectroscopy in magnetic crystals and other correlated materials. By a novel interplay of experimental and theoretical techniques we achieve a combined understanding of the photoelectron, Auger, and Auger-photoelectron coincidence spectra (APECS) of the antiferromagnetic CoO. A recently discovered dichroic effect in angle resolved (DEAR) APECS reveals a complex pattern in the Auger line shape, which is here explained in detail, labeling the final states by their total spin. Since the dichroic effect exists in the antiferromagnetic state but vanishes at the Ne´el temperature, the DEAR-APECS technique detects the phase transition from its local effects, thus providing a unique tool to observe and understand magnetic correlations where the usual methods are not applicable.

Insight on Hole-Hole Interaction and Magnetic Order from Dichroic Auger-Photoelectron Coincidence Spectra

R Gotter;
2011

Abstract

The absence of sharp structures in the Auger line shapes of partially filled bands has severely limited the use of electron spectroscopy in magnetic crystals and other correlated materials. By a novel interplay of experimental and theoretical techniques we achieve a combined understanding of the photoelectron, Auger, and Auger-photoelectron coincidence spectra (APECS) of the antiferromagnetic CoO. A recently discovered dichroic effect in angle resolved (DEAR) APECS reveals a complex pattern in the Auger line shape, which is here explained in detail, labeling the final states by their total spin. Since the dichroic effect exists in the antiferromagnetic state but vanishes at the Ne´el temperature, the DEAR-APECS technique detects the phase transition from its local effects, thus providing a unique tool to observe and understand magnetic correlations where the usual methods are not applicable.
2011
Istituto Officina dei Materiali - IOM -
Auger
coincidence cpectroscopy
electron spectroscopy
surface magnetism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/242481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact