We present a comparison between numerical and analogue models focusing on the role of inherited lithospheric structures in influencing the process of continental break-up. Our results highlight that the presence of pre-existing anisotropies localizes strain and favors continental break-up and formation of a new ocean. For a fixed strain rate, the pre-rift lithosphere configuration influences rift duration, melt production and width and symmetry of the continental margin pair. Model results show a mainly two-phase tectonic history from continental extension to oceanization. In the first phase extension affects contemporaneously the whole rift structure, while in the second phase asthenosphere upwelling occurs into punctiform regularly-spaced spots sequentially propagating in an extension-orthogonal direction.
Transition from continental break-up to punctiform seafloor spreading: How fast, symmetric and magmatic.
CORTI G;BONINI M;
2003
Abstract
We present a comparison between numerical and analogue models focusing on the role of inherited lithospheric structures in influencing the process of continental break-up. Our results highlight that the presence of pre-existing anisotropies localizes strain and favors continental break-up and formation of a new ocean. For a fixed strain rate, the pre-rift lithosphere configuration influences rift duration, melt production and width and symmetry of the continental margin pair. Model results show a mainly two-phase tectonic history from continental extension to oceanization. In the first phase extension affects contemporaneously the whole rift structure, while in the second phase asthenosphere upwelling occurs into punctiform regularly-spaced spots sequentially propagating in an extension-orthogonal direction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


