We analyse the impact of climate interannual variability on summer forest fires in Catalonia (northeastern Iberian Peninsula). The study period covers 25 years, from 1983 to 2007. During this period more than 16000 fire events were recorded and the total burned area was more than 240 kha, i.e. around 7.5% of whole Catalonia. We show that the interannual variability of summer fires is significantly correlated with summer precipitation and summer maximum temperature. In addition, fires are significantly related to antecedent climate conditions, showing positive correlation with lagged precipitation and negative correlation with lagged temperatures, both with a time lag of two years, and negative correlation with the minimum temperature in the spring of the same year. The interaction between antecedent climate conditions and fire variability highlights the importance of climate not only in regulating fuel flammability, but also fuel structure. On the basis of these results, we discuss a simple regression model that explains up to 76% of the variance of the Burned Area and up to 91% of the variance of the number of fires. This simple regression model produces reliable out-of-sample predictions of the impact of climate variability on summer forest fires and it could be used to estimate fire response to different climate change scenarios, assuming that climate-vegetation-humans-fire interactions will not change significantly.

Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian Peninsula)

Antonello Provenzale
2013

Abstract

We analyse the impact of climate interannual variability on summer forest fires in Catalonia (northeastern Iberian Peninsula). The study period covers 25 years, from 1983 to 2007. During this period more than 16000 fire events were recorded and the total burned area was more than 240 kha, i.e. around 7.5% of whole Catalonia. We show that the interannual variability of summer fires is significantly correlated with summer precipitation and summer maximum temperature. In addition, fires are significantly related to antecedent climate conditions, showing positive correlation with lagged precipitation and negative correlation with lagged temperatures, both with a time lag of two years, and negative correlation with the minimum temperature in the spring of the same year. The interaction between antecedent climate conditions and fire variability highlights the importance of climate not only in regulating fuel flammability, but also fuel structure. On the basis of these results, we discuss a simple regression model that explains up to 76% of the variance of the Burned Area and up to 91% of the variance of the number of fires. This simple regression model produces reliable out-of-sample predictions of the impact of climate variability on summer forest fires and it could be used to estimate fire response to different climate change scenarios, assuming that climate-vegetation-humans-fire interactions will not change significantly.
2013
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
wildfires
climate impacts
Mediterranean
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/242802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact