During replicative stress, Claspin mediates the phosphorylation and consequent activation of Chk1 by ATR. We found that during recovery from the DNA replication checkpoint response, Claspin is degraded in a betaTrCP-dependent manner. In vivo, Claspin is phosphorylated in a canonical DSGxxS degron sequence, which is typical of betaTrCP substrates. Phosphorylation of Claspin is mediated by Plk1 and is essential for binding to betaTrCP. In vitro ubiquitylation of Claspin requires betaTrCP, Plk1, and an intact DSGxxS degron. Significantly, expression of a stable Claspin mutant unable to bind betaTrCP prolongs the activation of Chk1, thereby attenuating the recovery from the DNA replication stress response and significantly delaying entry into mitosis. Thus, the SCFbetaTrCP-dependent degradation of Claspin is necessary for the efficient and timely termination of the DNA replication checkpoint. Importantly, in response to DNA damage in G2, Claspin proteolysis is inhibited to allow the prompt reestablishment of the checkpoint.

SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response

Angelo Peschiaroli;
2006

Abstract

During replicative stress, Claspin mediates the phosphorylation and consequent activation of Chk1 by ATR. We found that during recovery from the DNA replication checkpoint response, Claspin is degraded in a betaTrCP-dependent manner. In vivo, Claspin is phosphorylated in a canonical DSGxxS degron sequence, which is typical of betaTrCP substrates. Phosphorylation of Claspin is mediated by Plk1 and is essential for binding to betaTrCP. In vitro ubiquitylation of Claspin requires betaTrCP, Plk1, and an intact DSGxxS degron. Significantly, expression of a stable Claspin mutant unable to bind betaTrCP prolongs the activation of Chk1, thereby attenuating the recovery from the DNA replication stress response and significantly delaying entry into mitosis. Thus, the SCFbetaTrCP-dependent degradation of Claspin is necessary for the efficient and timely termination of the DNA replication checkpoint. Importantly, in response to DNA damage in G2, Claspin proteolysis is inhibited to allow the prompt reestablishment of the checkpoint.
2006
Istituto di Biologia Cellulare e Neurobiologia - IBCN - Sede Monterotondo Scalo
Istituto di Biochimica e Biologia Cellulare - IBBC
DNA
PROTEINS
CELLCYCLE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/242920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact